SOLUCIONES

Ejercicio 1

- a)2
- b)0
- c)-2

Ejercicio 2

- a)tangente: y = 5x 2
 - normal: y = -1/5 x + 16/5
- b) tangente: y = -x + 2
 - normal: y = x
- c) tangente y = -x + 1
 - normal: y = x + 1

Ejercicio 3

-2, 0 y 1

Ejercicio 4

En el punto x=1

Ejercicio 5

a = -1 y b = 1

Ejercicio 6

- a) Derivable en $\mathbb{R} \{0\}$
- b)Derivable en $\mathbb{R} \{0\}$
- c) Derivable en $\mathbb{R} \{\pi\}$

Ejercicio 7

- a)Derivable en $\mathbb{R} \{-\frac{1}{2}\}$
- b)Derivable en $\mathbb{R} \{1\}$
- c)Derivable en $\mathbb{R} \{-2, 3\}$

Ejercicio 8

$$a = \sqrt{\frac{1}{2}} \quad y b = \sqrt{\frac{1}{2}}$$

Ejercicio 9

- a) $\frac{(X+1)e^X+1}{2\sqrt{xe^X+x}}$
- b) 2cotg (2x)

$$(2x+1)$$
 sen $x+(2-x)\cos x+3x-3$

- $\frac{(2x+1)sen x + (2-x)\cos x + 3x 3}{10x^2 \sqrt{\frac{3-sen x 2\cos x}{5x}}}$
- e) $\underline{a \cdot \ln(3) \cdot 3}^{\underline{sen \, ax}}$ $\cos^2 ax$
- f) $\frac{1-(2x+1)\cdot \ln 2}{2x+1}$
- g) $\ln 2 \cdot 2^x \cdot \text{sen}(2^x) \cdot \cos(\cos(2^x))$

$$\cos x + x \cdot \ln x \cdot \sin x$$

h)
$$3x.\cos x \sqrt[3]{\left(\frac{\ln x}{\cos x}\right)^2}$$

- i) $\frac{x^2 + 2x + 1}{4(1 - x^2)^2 \sqrt[4]{\left(\frac{x+1}{1-x^2}\right)^3}} = \frac{1}{4(1-x)^2 \sqrt[4]{\left(\frac{x+1}{1-x^2}\right)^3}}$
- $j) \frac{2^{x}(\cos x + \ln 2 \cdot sen x)}{3\sqrt[3]{(2^{x} \cdot sen x)^{2}}}$
- k) $a^x e^{ax} (\ln a + a)$

- Ejercicio 10 a)f'(x) = $\frac{-2}{(x-1)^2}$
- b)y = -2x + 7
- c)No
- d)No

Ejercicio 11

Derivable en R

Ejercicio 12

$$\Delta V = 56.5 \text{ cm}^3$$

Ejercicio 13

 $6283 \text{ cm}^2/\text{s}$

 $157079.6 \text{ cm}^3/\text{s}$

^{*} Para resolver este ejercicio hay que calcular S'y V'. Consulta el apartado derivada implícita

Ejercicio 14

 $\Delta V = 0.024 \text{ m}^3$

Ejercicio 15

a) Ambas derivadas valen 0 b)Sí

c)f'(x) =
$$\begin{cases} x & si & x \ge 0 \\ -x & si & x < 0 \end{cases} \quad \forall x \in \mathbb{R}$$

Ejercicio 16

En x=3 y x=2* Igualar f'a 1 y -1

Ejercicio 17

a)x = -1 y x = 3

b)
$$x=-2$$
 y $x=4$
c) $x=0$ y $x=2$

Ejercicio 18

Derivable en $\mathbb{R} - \{0\}$

Ejercicio 19

Derivable en $\mathbb{R} - \{0\}$

Ejercicio 20

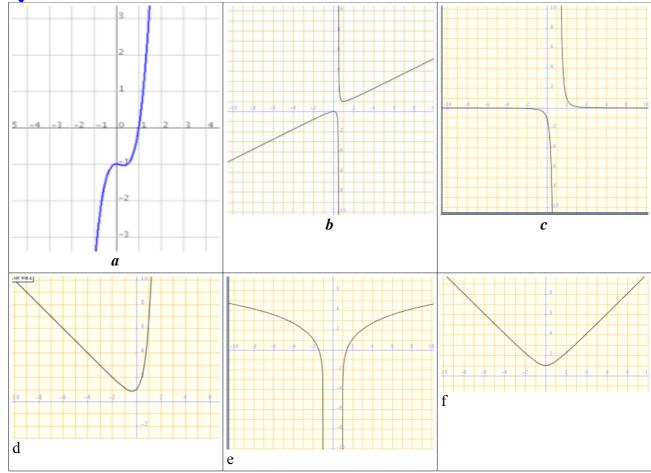
a)Creciente $(-\infty, \frac{-2-\sqrt{7}}{3}) \cup (\frac{-2+\sqrt{7}}{3}, +\infty)$ Decreciente $(\frac{-2-\sqrt{7}}{3}, \frac{-2+\sqrt{7}}{3})$

Decreciente
$$\left(\frac{-2-\sqrt{7}}{3}, \frac{-2+\sqrt{7}}{3}\right)$$

b)Creciente en todo su dominio

c)Creciente $(1, +\infty)$ Decreciente $(-\infty, -1)$

d)Creciente


$$(\sqrt{\frac{1}{2}}, +\infty)$$
 Decreciente $(-\infty, -\sqrt{\frac{1}{2}})$

e)Decreciente en todo su dominio

Ejercicio 21

Creciente decreciente creciente creciente

Ejercicio 22

Ejercicio 23

* Sale demasiado complicado, de todas formas, intentadlo.

Ejercicio 24

y-3 = -3/2 (x-2)

Ejercicio 25

Rectángulo de dimensiones b/2 y c/2

Ejercicio 26

* Indicación. Poner un perímetro concreto, por ejemplo 10 cm.

Con ese perímetro sale como solución los lados iguales 10/3 cm y el desigual 10/3 también, o sea que el triángulo sea equilátero.

Ejercicio 27

Un cubo de $\sqrt[3]{4}$ m de lado

Ejercicio 28

Debe vender dentro de 19 días.

Ejercicio 29

- a) Creciente en todo su dominio
- b) No
- c) Convexa: (-∞, 0) U (0, ½) y cóncava (½, +∞)
- d) PI: $(\frac{1}{2}, e^{-2})$

Ejercicio 30

a = -2, b = 4

Ejercicio 31

- a) 1
- b) 0
- c) -6
- d) 0
- e) $-\frac{1}{2}$